
 Journal of Innovative Engineering and Research (JIER)

 Vol.- 1,Issue - 1, April 2018, pp. 28-31 (4 pages)

ISSN (Online) : 2581–6357, Vol. – 1, Issue -1, 2018 @ JIER 28



Abstract— The scope of my work includes study of VHDL

language and algorithms for computing arithmetic and

logical operation with their function suited for hardware

implementation. These algorithms are used as functional

blocks in RISC processor. The algorithms are coded in

VHDL and validated through extensive simulation.ISE

Xilinx simulator is used for the simulation of all the models.

Experimental results show feasibility of modeling strategy

and provide performance measures of 16 Bit RISC

Processor design features This VHDL code is then

synthesized by Leonardo Spectrum tool to generate the gate

level net list that can be implemented on the FPGA. This is

general purpose Processor use on Application or Customer

Specific Integrated Circuited (ASIC or CSIC)

Index Terms— RISC, CISC, HDL, CPU, RTL, ASIC.

I. INTRODUCTION

A microprocessor is a multipurpose, programmable, clock

driven, register based electronic device that reads binary

instruction from a storage device called memory, accepts

binary data as input and processes data according to those

instructions, and provides results as output. A typical

programmable machine can be represented with three

components: microprocessor memory and I/O (input/output).

The microprocessor operates in binary digits, 0 and 1, also

known as bits. Each microprocessor recognizes and processes

a group of bits called the word, and microprocessor are

classified according to their word length. For example, a

processor with an 8 bit word is known as an 8 bit

microprocessor and a processor with a 16 bit word is known

as a 16 bit microprocessor

1.1 RISC Architecture

The concept of a RISC Processor is based upon the idea that a

small, basic instruction set in conjunction with a “smart”

compiler can deliver superior performance over a Complex

Instruction Set Computer (CISC) with a large number of

specialized instructions. The simplicity of the operations

performed ideally allows every instruction to be completed in

one processor cycle. The basic data path of a RISC processor

is shown below in Figure 1.

The Instruction Decoder loads the instruction pointed to by

the program counter (PC) from processor memory. The

Instruction Decoder then generates the appropriate control

signals for the Execute unit, which performs the desired

function (arithmetic, logic, etc.) on the data. The Write-back

unit then updates the memory with any new values.

Figure 1: RISC Processor Data-path

Figure 2: RISC processor data path diagram

A more detailed look at the layout of the RISC processor is

shown below in Figure 2. The process starts out at the branch

selector, which loads the program counter with either the next

sequential address or the address of a program branch

depending on the value of the branch select signal. In the case

of an interrupt, the branch address input would contain the

address of the appropriate interrupt handler. The instruction is

then fetched from program memory and sent into the

instruction decoder, which loads the operand and functions

select buses and generates control signals for the rest of the

processor. The execute stage performs an operation or

interacts with the data memory. After the execute stage the

result is written to the processor registers if applicable.

Design and Implementation of 16 Bit RISC

Processor in VHDL Using Xilinx Tools
SHEETESH SAD

1
, SANTOSH PAWAR

2

1,2
Department of Electronics & Communication Engineering, Dr. A. P. J. Abdul Kalam University,

Indore

Corresponding Author Email: sheeteshsad@gmail.com

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 1,Issue - 1, April 2018, pp. 28-31 (4 pages)

ISSN (Online) : 2581–6357, Vol. – 1, Issue -1, 2018 @ JIER 29

1.2 RISC v/s CISC

What is CISC.

i.Complex Instruction Set Computer.

“High level” Instruction Set.

ii.Executes several “low level operations”.

iii..Ex: load, arithmetic operation, memory store.

Features of CISC

 Instructions can operate directly on memory.

 Small number of general purpose registers.

 Instructions take multiple clocks to execute.

 Few lines of code per operation.

What is RISC

 Reduced Instruction Set Computer.

 RISC is a CPU design that recognizes only a limited

number of instructions.

 Simple instructions.

 Instructions are executed quickly.

Features of RISC

 “Reduced” instruction set

 Executes a series of simple instruction instead of a

complex instruction

 Instructions are executed within one clock cycle

 Incorporates a large number of general registers for

arithmetic operations to avoid storing variables on a

stack in memory

 Only the load and store instructions operate directly

onto memory

 Pipelining = speed.

II. DESIGN OF 16 BIT RISC PROCESSOR

A microprocessor based system includes three components:

microprocessor, I/O (input/output) and memory (read/write

memory and read only memory).These components are

organized along a common communication path called a bus.

The entire group of components is also referred to as a system

or a microcomputer system and the component themselves are

referred to as sub system. The microprocessor is one

component of the microcomputer.

Microprocessor:-The microprocessor can be divided into

three segments for the sake of clarity.

Arithmetic/Logic Unit:-this is the area of the microprocessor

where various computing function are performed on data. The

ALU Unit performs such arithmetic operation as addition and

subtraction and such logic operation as AND, OR etc.

Register Array: - This area of the microprocessor consists of

various registers. These registers are primarily used to store

data temporarily during the execution of a program and are

accessible to the user through instruction.

Control Unit: - The control unit provides the necessary

timing and control signals to all the operations in the

microcomputer. It controls the data flow of data between the

microprocessor and memory and peripherals.

2.1 Architecture

Top Level Design of 16 bit processor

Figure 3: Top Level Design of 16 bit processor

The top-level design consists of the processor block and a

memory block communicating through a bidirectional data

bus, an address bus, and a few control lines. The processor

fetches instructions from the external memory and executes

these instructions to run a program. These instructions a

restored in the instruction register and decoded by the control

unit. The control unit causes the appropriate signal

interactions to make the processor unit execute the

instruction.

If the instruction is an add of two registers, the control unit

would cause the first register value to be written to register

OpReg for temporary storage. The second register value

would then be placed on the data bus. The ALU would be

placed in add mode and the result would be stored in register

OutReg. Register OutReg would store the resulting value until

it is copied to the final destination.

Figure 4: Internal block diagram of processor

III. SIMULATION

Simulating the processor design is different from most other

entities because the processor design doesn’t need much

outside stimulus. the memory device provides the input data

for the processor much as a stimulus file would for other

entities. the processor reads its program from the memory

device. the processor need only have the clk signal and reset

signal stimulated properly, and the processor reads and

executes instructions from that point forward.

the only stimulus needed to start the operation of the

processor is a uniform signal applied to the clk input and a

pulse applied to the reset input for at least 2 clock cycles. this

starts the processor into the reset sequence. after the reset

sequence has been started, the processor is initialized and

starts executing the processor instructions from the mem

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 1,Issue - 1, April 2018, pp. 28-31 (4 pages)

ISSN (Online) : 2581–6357, Vol. – 1, Issue -1, 2018 @ JIER 30

entity. The processor is simulated as stimulus only initially to

verify that the device seems to be functioning. More complex

test benches need to be created that include comparison

against a known good result to verify correctness. The

simplest method for doing this is to manually verify the results

the first time, capture the output results, and then use them for

comparison later.

The first step in simulating the processor is to compile all the

files that make up the design into a format that the simulator

can use. The compiled format is loaded into the simulator, and

the simulation is executed. The ModelSim simulator from

Model Technology is used for the simulation process.

The first step in compiling all of the files in the design is to

create one or more libraries to store the compiled data. The

default library to store the compiled data is a library called

work. The name work is the logical name of the library; the

physical location of the library can be anywhere.

3.1 Synthesize RTL view

Top module RTL

Figure 5: RTL view of 16 Bit RISC processor

ALU RTL

Figure 6: RTL view of ALU

FSM RTL

Figure 7: RTL view of FSM (Final State Machine)

RAM RTL

Figure 8: RTL view of RAM

ROM RTL

Figure 9: RTL view of ROM

REGISTER RTL

Figure 10: RTL view of Register

3.2 Simulation wave form view

ALU Input Output Simulation wave form

Figure 11: ALU Input Simulation wave form

Figure 12: ALU Output Simulation wave form

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 1,Issue - 1, April 2018, pp. 28-31 (4 pages)

ISSN (Online) : 2581–6357, Vol. – 1, Issue -1, 2018 @ JIER 31

FSM Input Output Simulation wave form

Figure 13: FSM Input Simulation wave form

Figure 14: FSM Output Simulation wave form

Register Input Output Simulation wave form

Figure 15: Register Input Simulation wave form

Figure 16: Register Output simulation wave form

VI. CONCLUSION

16 bit RISC processor was designed using top down design

methodology. A general purpose RISC processor is design to

carry out various arithmetic and logic instructions. The RISC

processor is implemented using VHDL language. The

baseline architecture of RISC processor is designed including

its subsystem blocks. The various blocks are simulated and

synthesized using efficient software like Xilinx ISE

Simulator. The design is optimized for the area constraint

during synthesis. It was then simulated and synthesized

successfully by ISE simulator of Xilinx and Implemented on

to the SPARTEN 3E FPGA Board

REFERENCES

[1] Douglas L Parry, VHDL Programming By Examples, Tata

McGraw-Hill, New Delhi, 2002.

[2] J. Bhasker, VHLD Primer, Pearson Education Asia, 2002

[3] R. Gaonker, Microprocessor Architecture, programming

and Application, Penram International Publishing India,

2000.

[4] J. F. Wakerly, Digital design- Principle and practices,

Tata McGraw Hill Series.

[5] IEEE RISC Processor MIPI London all members meeting

September 21
st
 2005.

[6] VHDL modelling guide Intel microprocessor data sheet.

[7] R. B. Brown, R. J. Lomax, G. Carichner, and A. J. Drake,

“A Microprocessor Design Project in an Introductory

VLSI Course”.

[8] Y. Zi He , Thesis of Building A RISC Microcontroller in

an FPG.

[9] Kang-joo Kim and Koon-shik Cho, “Design &

Verification of 16 Bit RISC Processor”.

[10] Enoch O. Hwang, Digital Logic and Microprocessor

Design with VHDL.

[11] C. H. Roth, Digital system design using VHDL.

[12] D. J. Smith, HDL Chip Design Using VHDL or Verilog,

Doone Publication.

[13] H. Woods, Digital Logic Design.

[14] P. S. Mane, “ Implementation of RISC Processor on

FPGA”.

[15] B. L. Di Jasio, Programming 16-Bit PIC

Microcontrollers in “C”.

